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ON THE STIEFEL-WHITNEY CLASSES OF
A MANIFOLD. II

W. S. MASSEY!

1. Introduction. This note is a complement to a previous paper of
the same title [1]. In that paper it was proved that certain Stiefel-
Whitney classes or dual Stiefel-Whitney classes modulo 2 of a differ-
entiable manifold always vanished. In the present note, analogous
theorems are proved about the integral Stiefel-Whitney classes of a
manifold.

The following convention regarding notation will be followed con-
sistently. The mod 2 Stiefel-Whitney classes are denoted by lower-
case letters, w;, while the integral Stiefel-Whitney classes are denoted
by capital letters, W,; the subscript denotes the dimension. A bar
over the appropriate symbol denotes the dual Stiefel-Whitney class,
integral or mod 2, thus: W;, ;. Of course the integral classes are only
defined in odd dimensions.

Let M™ denote a compact, connected, orientable, differentiable #n-
manifold. We will prove the following three theorems about its inte-
gral Stiefel-Whitney classes:

THEOREM 1. If n is even, W,_1=0.
THEOREM 2. If n is even, W,_1=0.
THEOREM 3. If n =3 mod 4, W,_2=0.

Note that Theorem 1 implies Corollary 1 to Theorem I of [1] in
the orientable case. Similarly, Theorem 2 implies Theorem I of [1],
and Theorem 3 represents a strengthening of part of the conclusion
of Theorem III of [1].

The main interest in Theorem 1 stems from the fact that A. Hae-
fliger and M. Hirsch have recently proved [3] that any (compact,
orientable, differentiable) M», n>4, is differentiably imbeddable in
R2~1if and only if W,_1=0 for # even and @,_;=0 for # odd. Thus it
follows from Theorem 1 above and Corollary 1 to Theorem I of [1]
that such an M" is always differentiably imbeddable in R?"~1 for n > 4.

An interesting application of Theorem 2 is to 8-dimensional mani-
folds. According to [2, p. 170], for any compact, orientable M?,
Ws=0; by Theorem 2, W;=0. Thus Wj is the only integral Stiefel-
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Whitney class of an 8-dimensional manifold which can be nonzero.
It is known that Wj is the first obstruction to the existence of an al-
most complex structure on M8, and if W;=0, then Wy is the second
obstruction. Therefore if we remove a single point from any compact,
orientable M8 for which W;=0, the resulting noncompact manifold
admits an almost-complex structure.

Note also that Theorem 2 above and Theorem III of [1]imply that
the first obstruction to defining a field of tangent 2-frames on a com-
pact, orientable z-manifold always vanishes provided #» =1 mod 4.
This raises the question of determining the second obstruction to such
a field.

2. A lemma. Assume that M" is a compact, connected orientable
n-manifold. Let T denote the torsion subgroup of H¢(M*, Z). Let
p be a prime number, and

t 3

0
(S) HY(M, Z) £ H(M, Z) 5> Ho(M, Z,) > He+1(M, 2)

be the exact sequence associated with the coefficient sequence

0—2Z 2, Z—Z,—0.
The cup product is a bilinear form
U: Hy(M~, Z,) X H9(M*", Z,) —» H"(M", Z,) = Z,.

According to the Poincaré Duality Theorem, this bilinear form is
nondegenerate.

LeMMA 1. For any g, r(T"9) is the annihilator of r[HY(M, Z)].

Proor. It is clear that (7"~ %) is contained in the annihilator of
r[H(M, Z)]. We will complete the proof by showing that r(7'%) has
the same rank (as a vector space over Z,) as the annihilator of
r(H?9). For this purpose we introduce the following notation:

b;=1ith Betti no. of M =rank of H{(M, Z).

¢;=number of cyclic summands in the p-primary component of T*
(i.e., the p-primary component of T is the direct sum of ¢; cyclic
subgroups).

According to the Poincaré Duality Theorem, b;=b,_;and ¢;= cp_iy1.
Consideration of the exact sequence (S) shows that the rank of the
vector space Hi(M, Z,) is b;+c;+c,41 while the ranks of the sub-
spaces r(H?) and r(T%) are b;+c; and ¢, respectively. Therefore the
rank of the annihilator of »(H?) is
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(ba—g + Cn—g F Cn—gp1) — (bg + ¢o)
= (by + Cnmq+ ¢) — (bg+ €g) = Ca—g

which is precisely the rank of the subspace 7(7"~9), as was to be
proved.
REMARK. This lemma is apparently well known; see [2, p. 169].

3. Proof of Theorem 1. We will use the exact sequence (S) and the
preceding lemma for the case p=2. It is well known that

Wit = 6*(wy), (i even);

in fact, this equation may be taken as the definition of Wi Hence
by exactness of (S), to prove W,_1=0, it suffices to prove that
W, &7 (H""?). By the preceding lemma, this is equivalent to proving
that #,_; annihilates the subspace r(T?) CH*(M, Z,).

By Lemma 7 of [1], the homomorphism H2(M*, Z;)—H"(M", Zy)
defined by x—x-w,_; is a sum of iterated Steenrod squares, which we
may assume to be admissible on account of Adem’s relations. By
Lemma 4 of [1] we may assume that the excess of any such admissible
iterated Steenrod square is 1 or 2. We will complete the proof by
showing that for x&r(71?),

Sq'(x) = 0,

where Sq7; H*(M™", Zy)—H"(M", Z,) is any admissible iterated Steen-
rod square of excess 1 or 2 and degree n—2.

In case the excess is 1, then we must have I= (27, 2+, - . . 2, 1)
for some integer j=0. But in this case it is clear that Sqlx=0, for
xEr(T?), because

Sqlx = r§*(x) = 0
by exactness of (S).

In case the excess is 2, by Lemma 5 of [1] there exists an admissible
iterated Steenrod square, Sg’, and a power of 2, m =2F, such that

Sg'x = (Sq’x)™
and J has excess 0 or 1. In case J has excess 0, then
Sqlx = am

and it is obvious that Sg’x =0 for xE7(T?). In case J has excess 1,
then J=(27, 2771, . . . 2, 1) for some integer j =0 exactly as before,
- and Sg’(x) =0 for x&r(T?) for the same reason as before. Thus in
either case, Sq/(x) =0 for xE7(T?), as was to be proved.
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4. Proof of Theorem 2. We will divide the proof into two cases,
according as n=4k-+2 or n=4k. In both cases, use will be made of
the following lemma.

LEMMA 2. For any integer i, Ur is the reduction mod 2 of an integral
cohomology class.

ProoF. Here U; denotes the class of Wu; the Stiefel-Whitney
classes are defined in terms of the U; by the formula

w; = Z Sqi_iUg.

It is readily seen by induction on j that the U; may be expressed as
polynomials in the Steenrod squares of the wj, and hence as poly-
nomials in the Stiefel-Whitney classes w; (since any Steenrod square
of a Stiefel-Whitney class may be expressed as a polynomial in the
Stiefel-Whitney classes). Now it is well known that the square of any
Stiefel-Whitney class, 7, is the reduction mod 2 of an integral class;
for j even, it is the reduction of a Pontrjagin class, while for j odd
it is the reduction of W;. Hence the square of any polynomial in the
w; is the reduction mod 2 of an integral class. In particular, U} is the
reduction of an integral class.

First we will prove Theorem 2 for the case n=4k+2, the easiest
case. In this case

2k 2
Wp—2 = Wy = Sq Uzk = U2k
which is the reduction mod 2 of an integral class by the lemma. Hence
Wn_l = 5*(71)"__2) =0

by the exactness of (S).
Next, we will prove Theorem 2 for the case #=4k. In this case

Wpg = Wap—g = S 2U .

To prove W,_1=0, it suffices to prove that x-w, =0 for any
xCr(T?), as in the proof of Theorem 1. To achieve this, it obviously
suffices to prove that for m=2¢ ¢=0, and x&r(7?),

1 AmSgHmT y, = 22mSqH—tn Ty,
For, successive application of (1) with m=1, 2, 4, 8, - - - shows that
B Wop = %S Uy = a2-SgP4Uy

= x4,Sq2k—8U2k = +..=0,
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To prove (1), note first that since Sg'x =0, the only nonzero Steenrod
squares of x™ are

I

Sqoxm

Sq2mxm = x2m,

x",

Therefore by Cartan’s formula,
(2) Sq=tm(xmUqgy,) = amSq¥2mU gy + x2mSg*—4mU g
But by the definition of the Uj,
Sg*=m(xmUg) = Up—om(®™Uar)
3) = (Usp—omx™) U = Sq*(U gp—omx™)

m_ 2 2 2m
= (UZk—-me ) = Ugp—om® .
By Lemma 2, Uj_sm is the reduction mod 2 of an integral class;
since xEr(T?), Us—omx®™Sr(TT), ie.,

2m

€y Useam " = 0.
Combining (2), (3), and (4) gives (1) as desired.
5. Proof of Theorem 3. Let n=4k-+43; then

Wo_3 = Wa = qukng = U;k
which is the reduction mod 2 of an integral class by Lemma 2, and
Wos = 6*(Wa—3) = 0
by exactness of (S).
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